
NASA-TM-II2714

j" j

/

JOURNAL OF COMPUTER & SOFTWARE ENGINEERING, 1(4), 325-348 (1993)

Reliability Analysis of the X-29A
Flight Control System Software

Gloria J. Davis

NASA Ames Research Center
Moffett Field, CA

Michael R. Earls

NASA Dryden Flight Research Facility

Edwards Air Force Base, CA

F.A. Patterson-Hine

NASA Ames Research Center

Moffett Field, CA

Software reliability measurements of safety-critical software systems are not

well understood. In particular, a significant part of the testing of flight control
software for high performance aircraft is performed in full-up systems tests,

so the applicability of models developed for pure software systems is un-

known. In this study, data from flight tests of the X-29A forward-swept wing

aircraft, performed at NASA's Dryden Flight Research Facility, are analyzed
with the Statistical Modeling and Estimation of Reliability Functions for Soft-

ware (SMERFS) modeling package. This initial study is performed to identify
the applicability of current statistical software reliability models to this type

of data. Results from this analysis are presented following a description of

the data collection and documentation process utilized by the X-29 program.

These results are used to assess the applicability of these models and their

prediction capabilities in a flight test environment. Conclusions are pre-

sented, comparing the use of the statistical reliability models with the exist-

ing operational technique of testing with analysis using an engineering
perspective.

reliability analysis, safety-critical software, testing of flight control
software, statistical software models

325

326 DAVIS, EARLS,& PATTERSON-HINE

1 INTRODUCTION

NASA Ames Research Center conducts research on techniques for assessing the depend-

ability of safety-critical systems. To date, the tools and techniques have been applied

primarily to hardware systems. With software increasingly used as a critical component of

safety-critical systems, reliability analysis of software in an integrated system context is
necessary. Much of the work in software reliability assessment reported in the literature
has been done with a focus on commercial systems. To determine the applicability of such

models to safety-critical systems, the X-29A flight control system was selected for analy-
sis.

The flight operations community at Ames' Dryden Flight Research Facility conducts

flight research tests on experimental aircraft. Their successful process of ensuring safety
throughout the research programs has evolved through the years and is a culmination of

experience and good engineering judgment. Their subjective analysis approach to achiev-

ing qualification of each platform works, as it has never caused nor failed to detect

problems that resulted in catastrophe. However, the testing process for such systems at

Dryden employ no objective means of measurement and hence no metric to aid in
decisions to continue or to stop testing. Their current techniques l_r system verification
and validation, as particularly noted for safety-critical software, do not consist of strict

formal analysis techniques.

This paper presents the current safety-critical software evaluation techniques employed

at Dryden, complete with their development and test philosophy. Then an analysis tech-

nique of "engineering judgment" is applied to the currently maintained data and presented
in the form of "quick look" graphs for further analysis. Next, formal statistical reliability

analysis models are applied to these same data to determine the usefulness of their

predictive nature to this community, and to determine if this new representation of the data
could or would affect the flight test programs. The results show that the information

provided by these methods could help the program if the models could provide predictions
earlier in the software test process. The information provided by these models would

enable the test engineers in their efforts not necessarily in determining when to fly, but

when not to fly. Future work will determine what other types of programmatic information

could be used by the models to enable more accurate results earlier in the test program.

The following section provides an overview of the X-29 program. Next is presented the

software testing strategy followed by the failure reporting process. The data obtained

during the testing process are then segregated and analyzed with engineering judgment
using quick look data graphs, with the results reported in Section 5. Section 6 presents the

results of executing representative models in the SMERFS software package with this
data. General observations from this analysis are then summarized in the concluding

section.

2 X-29 PROGRAM OVERVIEW

NASA Dryden Flight Research Facility (DFRF) specializes in the flight test research of

high performance aircraft. The X-29A forward-swept wing technology demonstrator, an

aerodynamically unstable aircraft requiring a highly augmented software-intensive control

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 327

system to maintain stable flight, was initially flight qualified and operated from 1984 to

1988. The X-29 was developed under a DARPA sponsored program and managed by the

U.S. Air Force Flight Dynamics Laboratory. The system was contracted to Grumman

Aerospace Corp., who, in turn, subcontracted the sensor computer subsystem to Honey-

well, Inc. Honeywell was responsible for the flight control computers, flight software,

and control system sensors. DFRF conducted reviews and the flight test program.

Designed to be fault tolerant, the flight control system was a TMR (triple modular

redundant) digital system with a triplex analog backup system. Each of the three digital

flight control computers contained two digital processors--the control law processor and

the input/output processor. The two digital processors were Honeywell HDP-5301 pro-

cessors and the software for them was written in HDP-5301 assembly language. The

operational flight program contained approximately 29,000 instructions. The system was

designed to be fail operational/fail safe, hence able to return safely to base after any two
failures.

3 SOFTWARE TESTING STRATEGY

Data collection by DFRF on the X-29A flight control system began with the initial flight

qualification and continued through operational maintenance phases. For flight qualifica-

tion, there are two types of testing the flight software must pass: verification and valida-

tion (V&V). Recognized as a critical system component, the flight control software was

subjected to the contractor's V&V as well as NASA's independent V&V. Verification

ensures that the software operates as specified, through module testing, internal indepen-

dent review, and systems testing. The validation process ensures that the delivered system

performs adequately to accomplish the flight requirements. This includes failure modes

and effects tests in which failures are artificially induced and observations are made as to

the proper system response. Recognizing that the possible known combinations of real-

world scenarios are too numerous to analyze completely, continuous system testing in a

simulated environment was key to assuring that the generic faults would more likely be

discovered on the ground than in actual flight tests. Validation tests concentrated on the

most critical elements of the software: the control laws during normal operation, fault

reaction, mode logic, and redundancy management of computers and sensors.

NASA's primary V&V tool was the real-time six-degree-of-freedom hardware-in-the-

loop simulation facility. With three flight control computers (two flight qualified), a

failure status control panel, and an analog computer model of surface actuators, the full

range of flight phases were executed. This independent facility was used to identify most

of the discrepancies used in this analysis of software reliability. The simulators were run

most every day, with a log kept as to the number of hours the flight computers were

running. The data presented are from both the simulation laboratory and the actual flight

schedule. No data from the development phases of the project are included in this analy-

sis.

The process and techniques used in the X-29 project to assure safe, reliable software

are found in detail in a NASA Technical Memorandum, generated by the software manag-

er at Dryden [11. There was no formal analysis on the reliability of the flight control

software. As indicated by Duke [2], confidence is gained incrementally that the system

328 DAVIS, EARLS,& PATTERSON-HINE

will function correctly and reliably through Dryden's established qualification, verifica-

tion and validation process. The software of the X-29 was developed to the written

specifications and tested via a software test matrix. System tests were also generated from

the same specifications and executed on the flight control system software to ensure that
all of the requirements were implemented as specified. The data used for this analysis

were from the full-up system test.

3.1 Flight Control Software and the Flight Schedule

In the flight qualification and operational test phases at Dryden, the flight control software
was released in versions, building upon the previous version by increasing the flight

envelope, enhancing the type of research capabilities, and repairing detected errors. The

software was strictly maintained and the modification history for each module was re-

corded in the code. More than 100 software changes were implemented from the first

submission. All flown software changes were made by thc subcontractors who designed

and developed the code.

The flight schedule was designed to test and evaluate the aircraft's performance in an

expanding operational envelope. There were 14 versions of software flown over the
course of 242 flights. The first flights were of minimal functionality with a limited flight

control window and flying 0.6 Mach at 30,000 feet, to basically prove the safety of the
craft. Alter incrementally establishing the basic safety of the craft, the first full flight

envelope was executed after flight number 16, with the third flight software release

version. A complete list of the software versions, number of flights and the test objectives

is provided in Table 1.

4 ERROR DETECTION/DISCREPANCY REPORTS

A discrepancy reporting system was established to identify occurrences that were either

not expected or considered unsafe. When an unexpected result or problem occurred during
testing or flight, engineers would describe the problem, indicate which configuration item

was the probable cause (of 20), assign a criticality to the problem, and date the discrepan-

cy report (DR). Each DR was recorded in a database and submitted to a configuration

control board. After corrective action was accomplished and successively tested, it was

resubmitted to the board to be closed out. There were three levels of criticality that

discrepancies could have: criticality 1 is flight critical, indicating that a loss of life or

aircraft could occur; criticality 2 is mission critical, indicating that the research objective
could be compromised; and criticality 3 is any other detraction from the specifications that
is not life or mission critical, but rather a relative nuisance.

4.1 Discrepancy Classification

In the flight qualification and operational testing phase of the X-29 at Dryden, there were

296 discrepancy reports generated covering 20 different configuration items (i.e., naviga-
tion, instrumentation, flight controls system, structure, etc.l, the first one was dated

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 329

Table 1. Flight Software Versions and Flight

Flight Flight
Schedule Number Time Altitude

SW Version of Flights (hours) Range {ft)

III-AI-00 8 11.2

Ill-A J-01 8 10.2

IV-AC-03 7
V-AB-00 1
VoAB-01 13
V-AC -01 2
VI-AA-00 32

VII-AC-00 16

VII-AD-00 17

VlI-AD-01 38
VIII-AB-01 44

V III-AC-04 10
VIII-AD-00 17
VlII-AF-00 29

15K-20.3K

16K-31K

8.7 30K-41K
1.5 40K

13.7 30K-41K
2.3 40K

23.6 15K-40K

9.3 8K-43K

13 15.5K-50.2K

25 12.6K-50.2K
29.7 17.8K-50.4K

5.2 24.8K-46.2K
12 15.4K-46.2K
21.9 16.4K-41.7K

;chedule

Max.

Velocity
(Mach)

.43-.62

.58-.62

.70-.83
0.9

.73-1.1
1.05-1.1

.85-1.4

.9-1.2

.7-1.46

1.05-1.31
.96-1.2

.6-1.2

Flight Test
Objective

functional test and han-

dling qualities
ASE & FCS Stab. Clear-

ance, Formation, Flow
Visualization

Flight envelope exp.
man. camber contr.

envelope exp.
sw verif., env. exp.
envelope expans., maneu-

ver expans.
envelope expans., diver.

envel, clear.

handling quals., Ids.
expn., Navy eval.

aoa, airspeed, perf.
loads expans., engine vi-

bration

SW test, MCC div.
wing/canard loads
loads clear/milit, util.

06/20/84 and the last 1/27/89. The first flight was successfully completed on 12/14/84.

At the time of first flight, the software had already been tested by the contractors and by

the Dryden program engineers, and a calculated 380 hours of full-up systems testing had

been logged.

It should be noted that not all of the reported DRs were failures. Each observed

discrepancy was perceived by test engineers to have a chance of causing failures. Upon

review, most of the discrepancies were closed by corrective action or with a decision that

no action was required. Others were either eliminated because the flight mode in which

they occurred was removed or were never closed, remaining open because they could not

be resolved. The latter were typically carried on each flight as a Hazard Report (HR) and

acknowledged as an accepted risk. An example of a HR is "if the dual pitch rate gyros fail

to null and the 2 failures are undetected without commanded motion then this could cause

loss of control." This was determined as having a low probability of occurring in a I-hour

flight when the pilot is not generating much pitch rate (2.40/s). The causes of the DRs

ranged from tolerance levels set too conservatively resulting in premature shutdown or

false failures, to wrong implementation of a test (not a system failure but a test failure).

An important factor also to be noted in this analysis is the evolutionary aspect of the

software. The X-29A was designed to be a research tool. Assuring that the tool was safe

was of primary importance and once established, the research on the tool was performed

in an evolutionary manner. The flight control system software performed critical functions

in both the safety and research aspects of this tool. Hence the software was constantly

evaluated for safety and enhanced to enable further research. While the operational safety

330 DAVIS, EARLS, & PATTERSON-HINE

was never compromised, the research envelope was continually pushed. Hence there were

58 to 60 versions of software that were released (qualified as available for flight) and 14
actually flown.

As with any component of the aircraft, one must expect downtime to repair the
software. It was determined not unreasonable to expect 25_ downtime to software. _This

is logical because of the repair cycle involved. Once a problem is detected, the data are

first retrieved from the flight computers. After the data are analyzed and the source of the

problem identified, the appropriate changes in the software are implemented. After the

software is changed, the modifications are subjected to the appropriate V&V tests. Once

they satisfactorily pass, the entire flight control system is retested in the full-up systems
test. Only after successfully passing this repair and test process is the software reinstalled
into the aircraft and flown again.

5 RAW DATA ANALYSIS

The data presented in this report were not collected and maintained by the X-29 program

managers and engineers for purposes of statistical reliability analysis. There was no

formal reliability analysis identified as performed within the context of the program at
DFRF, separate from the full-up systems testing that has to date enabled program success.

These data were assembled at NASA Ames Research Center through an iterative process

of explaining our interests (software reliability analysis), indicating the various formats
for the data that would be useful, and clarification by the project team about their

information collection process. This effort was an assembly of various pieces, all of which

were readily available (though by different sources and different places). The data were

found through calls to key project personnel, access to the full set of discrepancy reports,
the flight schedule, software release versions, and the system simulation log. The data

span 6/20/84, by which time 102 test hours had elapsed, to 1/27/89 with 2863 elapsed

CPU hours. This last date was that of the last flight control software discrepancy for the
X-29A ship 1.

The first analysis is performed in a very subjective fashion: engineers (software,

aeronautical, and mechanical) looking at the data, understanding the functionality of the

system, and justifying the occurrence of various discrepancies. The graphs of the raw data

are presented without mathematical manipulation or curve fitting applications. The con-

clusions and abstractions made from this use engineering judgment and insight.

5.1 Discrepancy Reports Breakdown

As previously stated, 296 discrepancy reports were recorded at Dryden. The breakdown

by percentages of these is given in Figure !, indicating that 30_ of the total were due to
the flight control system, 65% of which were software related, and of these 21% were
safety critical.

Further breakdown of the discrepancies by configuration item, shown in Figure 2,

Ed Collins, X-29A AJPO and program historian, Wright Patters(m AFB, personal communication, Ocl.

1991.

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 331

Flight Control

System

(29 39%)

Figure la.

AllOther

(7061%)

X-29A discrepancy reports,

FC8 Hardware

(3448%)

FC5 Software

(65 52%)

Figure lb.

Criticality 3

(35 09%)

Flight control system DRs.

Cmticality t

(21 05%)

Figure lc.

y2
(43 86%)

Software DRs.

indicates that the greatest percentage was due to instrumentation. However, a closer look

shows that these were all of criticality level 2 or 3. Sixty percent of the criticality level 1

discrepancies were due to the flight control system software. The amount of discrepancies

for software alone indicates at least two major points: that the full-up systems simulation

is critical to the discovery of software errors that may only be discovered in such a setting,

and that the incorporation of reliability assessment measures at this phase of the program

could be beneficial. The ability to predict the occurrence of the next failure or discrepancy

332 DAVIS, EARLS, & PATTERSON-HINE

45 4_

19

o

c 7

4 5 4

_ _ [i

configuration item

Figure 2. X-29A aircraft systems discrepancy reports.

could provide program engineers insight to problem areas during their test efl'orts, and

enable more focuscd testing on these areas.

5.2 Flight Control Software Discrepancies

The Dryden community is acutely aware of the importance of data collection. However, the

collection and storage of this information for subsequent traceability is not the end of its

usefulness. The graphic representation of such data provides an intuitive overview of the

trend in the establishment of reliability in a system. If the cumulative number of discrepan-

cies is increasing at a constant rate, then the overall system maturity is not being established.

However, an indication that the system is gaining in reliability is that the slope of the overall

curve tends to decrease in magnitude, levels off to some asymptote, or ideally, remains

constant at 0. Looking at the slope of the cumulative discrepancies is not the only indication

of achieved reliability. It must also be understood what is being performed in the course of

generating this curve. In the case of Dryden's test program, all of the information presented

in the following set of graphs is from the established full-up systems testing of a research

aircraft system in which complete or subsets of actual flight profiles are conducted.

5.3 FCS Criticality Levels and Detection Dates

As seen in the graph of their actual time of detection, shown in Figure 3, the overall error

detection rate is constant, but the rates of detection for the individual criticality levels are

not constant. By the time of the first test flight (12/14/84, simulation execution hours

380), 41% of the total number of detected criticality I errors had been found, compared

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 333

E
.q
c

"O

6O

5O

4O

3o i

combined

• criticality 1

A criticality 2

e. criticality 3

20 - 's" O_/

I*

o • _= '

0.00 500.00 1000.00 1500.00

execution hours

Figure 3.

.,,t'
A

A

A=A

2000.00 2500.00 3000,00

Cumulative software DRs vs. execution time.

with 8% of the criticality 2 and 5% of criticality 3 DRs. Over 80% of the criticality 1 DRs

were submitted in the first 40% of collection time, whereas 85% of the reported criticality

3 DRs were in the middle 40% time span. The criticality 2 discrepancies tended to be

detected at a more constant rate overall. It seems intuitive that for safety-critical systems,

the visibility of certain errors is not realized until a certain amount of more critical errors

are discovered. This behavior has been stated before and classified by testing technique

[3]. This is not true for all errors, however, because the last two criticality I en-ors were

probably present from the beginning of the flight program, but they were neither enabled

nor discovered by the to-date scenarios flown or simulated. An example is the last

criticality I DR which was a single point of failure discovered after over 3_/2 years of

flying the craft (calendar time). The problem was described as a power supply detection

logic problem which would have resulted in loss of the control of the aircraft had a single

failure to null of the digital impact pressure input occurred. It was discovered in V&V

testing of a new flight release software version yet had been resident in the system from

the first release.

5.4 Seasonal Trend Detection

Over the 56 months the data were collected, the graph shown in Figure 4 indicates the

monthly density of the software discrepancies for all levels of criticality, yielding an

average of one discrepancy per month. This plot of data by the month could readily show

seasonal trends within the data. As can be seen, no trend strictly based on seasons are

obvious to this data set.

5.5 Failure Intensity

Another graphical representation of the raw data that provides immediate trends toward

increased reliability is the total number of DRs divided by the elapsed time to date. The

334 DAVIS, EARLS,& PATTERSON-HINE

5

45

4

35

3

25

2

15

r

O5

0

Figure 4. Monthly density of software defects.

plot of this failure intensity (h) to execution time for the DRs further adds credence to the

idea that the more critical errors are discovered early in a testing program, with less

critical errors observed only after the more critical ones are uncovered. The visually

constant rate of the failurc intensity for all levels of criticality is shown in the top curve in
Figure 5. The fluctuations are consistent with the V&V simulator tests on the new

versions of the software, whereby additional software was incorporated and/or an ex-
panded research flight envelope was being tested. A closer look at the individual crit-
icality levels is important for this program. Remember that this aircraft is a research tool.

However, to enable research it must first be safe. Therefore, the criticality levels indicate
the order of importance, that is (I) safety, (2) research, and (3) other.

Figure 5 presents a graph of the failure intensity of the total set of DRs and each of the

criticality 1, 2, and 3 subsets of DRs. The criticality ! DRs have a rapidly decreasing rate

with time. Maintaining safety is the primary goal of a safety-critical system. Hence a rapid
decrease in criticality 1 DRs essential. The intensity of the criticality 2 DRs indicates a
more constant rate with a tendency at the end towards an increase. With the continued

expansion of the research capability, testing new scenarios or adding further capability
explains the increase in criticality 2 DRs. The graph of the criticality 3 DRs shows a

delayed start, with a slow peak, and then a tendency toward decrease. It was indicated by

the program office that as time passed, tradeoffs between reporting nuisance errors with

formal traces of them and tolerating them were weighed and the latter increasingly would

be chosen without compromising the safety or research capability of the aircraft. Looking

at the individual failure intensity curves it is seen that this is due to the discovery of the
criticality level 2 DRs. The intensity of the safety critical DRs provided a classic software

reliability growth, highlighted in Figure 6. Based on the cumulative curves in Figure 3,

these trends are all understandable in the context of this experimental flight test program.

Each of these graphs make sense in the context of the program because of the implica-
tions of failures and the program's testing philosophy. Although this aircraft is a research

platform, safety is of first and foremost importance. The flight control system was

003

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 335

C

+J
c

0025

002

0015

001

0 005

/X

_IIm _ m i_ "

I

,,.-.-....
..... I I I I I t I llImlll I _ IIi I, I _ _ I

o o o o o o o o g o g g o o o o o o o g
L_ 0 LF_ 0 _ 0 L_ 0 IP_ 0 I/3 0 L_ 0

execution hours

m _ -combined _criticality 1 _ - _criticallty2 criticality 3 I

i

I

Figure 5. Failure intensity by criticality level.

required to successfully complete an established test matrix after system change. Test sets
were continually updated to reflect and test newly found errors. This enabled the program

engineers to gain confidence in the safety of the aircraft. Subsequent to this, the research

envelope was continually expanded through updated versions of the software. The con-

stant growth of capabilities lends itself to a constant level of mission critical discrepan-

0018

0016

0014 f _, _,, _ jP _/_ .._ _.

_ 001

c 0 008

0006

0004 I _'#

0 002

0 /i • I I I I I I I I I I I I I I I , I 111 I II I_ _ _ l : I I, _ _ _ 1, I1 _ 11 ,

execution hours

.... crR_caiity 2
I _ _--criticaiity 1,2combtned _criticality 1

Figure 6. Failure intensity of criticality levels 1 and 2.

336 DAVIS,EARLS,&PATTERSON-HINE

cies. The criticality level 3, or relative nuisance errors, tended to be identified after the

safety comfort level was established and detection continued semiconstantly. Admittedly,
more of this type could have occurred yet not been reported, accepting that some nuisance

errors are more tolerable than worth the effort of officially relx)rting with follow-up repair
and closure.

Discrepancies of all criticality levels contain useful information; however, to gain
insight into flight critical systems, the lack of implication by the nuisance discrepancies

cause them to be considered no further in this reliability analysis. "['hey neither add nor
detract from the operational system in a critical sense and inclusion of this data would

skew the significance of the reliability analysis. Another reason for eliminating this set of

data from further analysis is their lack of timely repair. It was often considered more

trouble than it is worth to repair these problems, and as the llight program progressed,
even the reporting of these DRs were considered incomplete. The occurrence of a crit-

ically 1 or 2 DR would require some type of resolution before further flight, by way of a
software repair, system work-around (function maintained by a backup), or it was carried

as an accepted risk. Whatever the resolution, it was determined as highly improbable that

the error would occur and cause system failure, and in reality none did. However, repair
was not mandated lot the criticality level 3 DRs and they were fixed at a convenient time.

Criticality level 2 DRs were written on problems that could compromise the research

mission of thc aircraft. The research program was designed to incrementally push the

boundaries of the advanced technologies being demonstrated on the X-29, thus the flight

envelope was continually revised throughout the program. The flight control system

software was designed to support this expanding capability, however, the core, safety-
critical functions remained unchanged. The criticality level I DRs thus represent the test
experience of a stable software core, and it is this subset of reports that are studied in-

depth, following a model selection process using both critically level I and 2 data. The

analysis process and results are presented in the/bllowing sections.

6 STATISTICAL ANALYSIS USING SMERFS

To determine the applicability of existing software reliability models to critical real-time

systems, the SMERFS program (Statistical Modeling and Estimation of Reliability Func-
tions for Software) was executed on the X-29A data [4]. This package provides a repre-

sentative selection of current software reliability models in a user-friendly form. SMERFS

allows the user flexibility in the format of the input data. Of the four types of data

allowed, two were selected for this analysis: test interval data with number of discrepan-
cies reported within that time, and CPU TBE data, which presents the actual CPU

execution time between discrepancies.

SMERFS provides five models for the CPU TBE type data and five models for the

interval type data. Detailed information on the program's capabilities and the various

available models can be found in [5, 61. The formatted data were appropriate tbr execution

of nine of these models. The NHPP model in the CPU TBE data type would not run,

indicating that the "data are not appropriate for this model.'" The following models were
executed: (a) CPU TBE--l_ittlewood/Verrall, Geometric, Musa Basic Execution, and

Musa Logarithmic-Poisson Execution Time, and (b) test interval--Generalized Poisson,

RELIABILITYANALYSIS OF X-29A FLIGHTCONTROL 337

Nonhomogeneous Poisson, Brooks & Motley Discrete, Schneidewind Maximum Likeli-

hood, and S-Shaped Reliability Growth.
SMERFS was initially executed on the criticality 1 and 2 data, consisting of 37 total

discrepancies. After selection of two models, further analysis is performed on the crit-
icality 1 data only. There were a total of 12 criticality I discrepancies in approximately
2900 CPU hours of full up systems operations. The interval data was formatted by

separating the total test hours into 100-hour intervals. The results obtained from these data

sets are presented.

6.1 Model Assumptions

Each model operates on a set of assumptions and the user is to decide the applicability to
the data. All models executed assume that the subject software was operated in a similar

manner as anticipated for operational use. This was true for the X-29A criticality level I

data since the safety-critical core software was considered a fixed entity. Only assump-

tions regarding the immediate repair of the software without new error introduction were

generally applicable--no subsequent discrepancies reported were traceable to previous

repairs. The system was maintained by those with intimate knowledge of the design and
integration. If the software was not altered immediately after a discrepancy was noted,

then the path in question was ensured not to be executed. No noted errors or discrepancies
were traced back to the introduction of "code fixes."

6.2 Model Test Strategy

Attempts were made to execute l0 software reliability models for two data formats: CPU

TBE (central processing units time-between-error) and interval counts and lengths. Nine
of the 10 models executed properly. The models were executed on the criticality I and 2

data. Figures 7a and 7b show that there was no single model that obviously fit this data
better than the others and that further analysis was required.

The remainder of the analysis is performed only on the criticality I data. This consisted

of executing each model on this data set and comparing both the retrodictive fit (how well

the model fit the input data) and the predictive fit (input t - 1 data points and have the
model predict the next). One model from each data type was then selected for the final

comparison on predictive accuracy.

6.3 CPU TBE Data and Model Executions

The data fl)r the CPU TBE models are shown in Table 2. The DR number is associated

with the time to that failure since the previous failure. The last column of Table 2 is the

remainder of the test and flight time in which no discrepancies were reported. Execution

of the four models available for this type of data was attempted in a stepwise manner to

investigate the predictive capabilities of each of the models. That is, upon entering the t_

to t i _data values, the models were requested to predict the MTBF for ti. The predictions

requested of the models were for t 6 through t I_. The results are presented in Table 3. For

338 DAVIS, EARLS, & PATTERSON-HINE

35

30

| 25

o15

10

5

40 -

• Schneidewind .. ! ._._.__T

i --- _--- S-S.a_ T_
fietd data

r
9"** 1°

0 _ + • 4 ; ,

0 5 10 15 20 25 30 35

actual discrepancies

Figure 7a. Criticality 1 and 2 test interval field data vs. retrodictive fit.

40

example, Littlewood/Verrall's model executing the maximum likelihood estimate with

linear fit operating on actual data t I through t_ predicted the MTBNE for t:0 is 176.21

hours. As seen, not all the models could produce valid results on this set of data. The term

na indicates that the model did not yield a prediction. This is because of the inability of

the models to establish internal parameters within the confines of the programs trust

region, primarily due to the rapid change in data.

2500

2000

1500

!
1000

3000 1
littlawood

-----.II-_- muss basic

........._".... geometric

muss Iog-polsson

-- field data

5OO

0 +

0 500 1000 1500 2000 2500 3000

exec. time (hours)

Figure 7b. Criticality 1 and 2 CPU TBE field data vs. retrodictive fit.

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 339

Table 2. CPU TBE Data

dr # 1 2 3 4 5 6 7 8 9 10 11 12 addl.

CPU 237 1 130 0 20.5 533 322. 45 15.5 106. 1333 329. >269
TBE 5 5 5

The results from the models varied widely. There is no obvious consensus on the

predictions from one failure to the next. Of the computed predictions, the Geometric least

squares is extremely optimistic. Failing to provide results for t]u and tit causes no further

analysis with this model. Musa's models were consistent in that no results were provided

until t_2. Hence, this model was not reliable for providing stepwise predictions early in the

flight program. The Littlewood/Verrall (LV) model consistently produced results, how-

ever. Between the four versions of this model, the maximum likelihood values tended to

be optimistic in times t_ and t]o yet compensated for the late failures in times tt_ and t_2.

Opposite from the maximum likelihood, the least squares version of the LV tended to

react more quickly to the most recent data without overcompensating the future predic-

tions. Hence, this model (LV least squares/quadratic fit) is selected to represent the CPU

TBE data type models for further analysis. Both the retrodictive fit and the predictive fit

provided by the LV model are shown in Figure 8, overlaid onto the actual data.

6.4 Test Interval Model Execution

For analysis on the test interval type models, the data in Table 2 were combined into 27

intervals, each representing 100 execution hours. Each available model for this data type

was executed in both a step-wise predictive and the retrodictive manner. The predictions

for the number of errors occurring in the next test interval (of 100 hours) from these type

Table 3. CPU TBE Model Predictions For t i Given t I to t; 1

Name --,

i Technique --,

t6

t7

t8

t9

tl0

tll

t12

t13

LV
ml/lin

na

na

na

239.3

176.21

101.25

268.4

12727

LV LV
ml/quad Is/lin

na na

na na

na 145.2

104.43 104.11

176.21 65.37

134.14 76.56

300.69 530.4

2775.1 517.55

LV Geom Geom MusaB MusaLP

Is/quad ml Is ml ml

na na na na na

na na na na na

211.5 130.79 1710.4 na na

130.57 103.30 105.99 na na

66.34 na na na na

81.96 na na na na

743.2 448.5 16270 962.8 225

678.49 497.2 922.8 798.75 239

Note. ml = maximum likelihood estimation;Is = least squares estimation;lin = linear fit;

quad = quadraticfit.

340 DAVIS, EARLS, & PATTERSON-HINE

12

11

10

_ 9
"O 8

IO

m

E

u

' i &

7

6

5

4

alo
2 1

t*

B

e

l •

e

o •

!

i •

e

_JIB •

=

_ o o o o o o c_ _ o o o o o o o o o _ _ ,7 o o o _ o c o

execution hour

!

• actual • LV retrofit • LV step pred

Figure 8. Littlewood/Verrall cumulative discrepancies.

models were not as informative as with the previous type. This is because the input range

was from 0 to 3 discrepancies occurring in a testing period. The models did not output
whole numbers, but rather fractions. However, SMERFS provides another prediction
from these types of models (with the exception of Schneidewind) which is the estimated

total number of errors at a given time. Many software reliability models calculate, based

on the input, the total number of errors within the system in order to determine the model

parameters and the tendency of the curve fit. The total number of errors predicted at
various stages by these models is provided in Table 4. As can be seen, the reactiveness

Table 4. Estimated Total Number of Errors

t4

t8

t9

tl0

t12

t17

t22

t25

t27

GP

ml

GP

Is

17376 na

10.3 13.7

70

97

13.5

10.0001

10.00

11.00

12.012

77

104

17.1

12.1

11.27

11.74

12.393

NHPP

ml

NHPP

Is

BM

Binom.

na na na

67 101 9

na na

na

21

11

10.2

11.5

na

28

13.5

12.2

12.8

13.513.1

125

72

11.4

10

10

11

12

BM

Poisson

na

S-Shape

rla

8 9

57 16

81

11.5

I0

10

11

12

16

11.6

10.2

10

11

12.2

E
,,,,i
e-

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 341

that was discovered in the CPU TBE type models is now shown in these models with this

output.

All of the interval data models provided comparable fits to the data; however, in

retrospect, the S-Shaped model consistently provided good predictions to the total number

of errors, it did not seem to overreact to failure intense intervals, but rather remained

consistent with its previous estimations and maintaining a real sense of limited total

number of errors• Figure 9 shows the S-Shaped model retrodictive fit as well as the

stepwise predictions, with the actual data. This model is selected to be the interval data

representative model for further analysis in the next section.

6.5 Comparative Analysis of Predictive Capabilities

There are three primary aspects of a statistical reliability model output: the probabilistic

model, a statistical inference procedure for determining the model parameters, and a

prediction procedure that combines the previous two to provide probability statements

about future failures [7J. Furthermore, it is not just the application of each model that

yields reliability results, but the validation of the accuracy of the models that provides the

credibility of the results. This validation comes only from analyzing each contributing

aspect of the model to the predictions as well as their outputs. It is common for some

models to provide accurate predictions in total number of errors but possibly be far off in

time to next error. It is only in the full analysis of each aspect of the models that will

indicate true validity. Several measures to validate all aspects of reliability models are

documented [7], including the measurement of model noise and bias, median variability,

rate variability, and prequential likelihood. Hence to deduce the predictive accuracy of

models, several tests should be performed on the outputs. Although these methods are

recognized as the proper means to truly understand how valid the models predict, the data

12

11

10

9

8

7

6

5

4

3

2

1

0

m
/

I =

• 0 Ie- _e H/i
/

4_

G

, , 8

I i
/

.. ,,, ® o _ .. ,,, ® o ,,,

execution interval (100 hours each)

• actual • S-Shaped retrofit A S-Shaped step pred

Figure 9. S-Shaped cumulative discrepancies.

.= oo
c_

342 DAVIS, EARLS, & PATTERSON-HINE

provided by this phase of the X-29A do not provide enough individual results to provide a

sufficient sampling to warrant these analysis functions. Furthermore, the methods pro-

posed by Abdel-Ghaly et al. are to determine, for a given data set, which model(s) provide

the best predictions. The intent of this paper is to determine it these models in general are

applicable to this type of data set. The predictive accuracy analysis within the context of

this paper is not to pick a best model, but rather to aid in the determination of their general

applicability. Therefore, less sophisticated methods are used l\)r this analysis [8]. Subse-

quent studies on safety-critical systems, provided more data, will utilize more comprehen-

sive techniques, such as those proposed by Abdel-Ghaly et al.

To assess the applicability of the models for a predictive analysis on this data, the

accuracy of the model fits and their capability to predict failures are analyzed. Both the

Littlewood/Verrall least squares parameter estimation with quadratic fit from the CPU

TBE model group and the S-Shaped from the interval-data models were selected for

further analysis. The values obtained from these models, both stepwise predictions and

the retrodictive model fit, are shown in Figures 8 and 9.

The results are compared using two relative error calculations--one for the cumulative

number of discrepancies to a time tj, called _ l, and the other for the estimated interval

time (MTTF) between failuresf, andJ}+ j, called _2 [81:

_1 :-- [m (tl) - actual numberj/actual number

2 [I/. (tt} - estimated valueJ/estimated value

where m (tt) is the expected number of cumulative failures at time tl and X (tt) is the failure
intensity at time t t.

The v,I values were calculated using the cumulative number of failures at respective

times, as presented in Table 5. Because the data set is sparse, the estimated cumulative

number of failures used the sole estimated values as provided by the models--not aver-

ages. The values are presented as rounded to the nearest whole number. The LV could not

provide predictions by t = 500. Based on the relative error plot as shown in Figure 10, it is

determined that the S-Shaped prediction set provided the overall best estimate of cumula-

tive number of errors at these given times. The LV model, however, provided a better
retrodictive fit.

Table 5. Cumulative Failures For Tim, t

LV
PredTime t

6

8

S-Shape
Pred

S-Shape
Retro

500 na

1000 10

1500 11

2000 11

2500 11

2700 11

LV
Retro

9 10

10 10 11 10

11 11 12 11

12 11

Actual

6 4 6

10 8 10

10 10

12 12

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 343

°' m m @ B
,,

-o I 500 o loo 2000 2500 27

-o2

-03

04

05

06

-07

08

09

I []LV-pred I_l LV-retro IIs-Shappred [_lS-Shapretro I

Figure 10. Relative error for cumulative number of failures. _.1.

The relative error for the mean time to failure is provided through calculations of e2.

The graphs in Figures 6 and 7 indicate the models' predictions for these times, both

stepwise and retrodictive. Because the S-Shaped model operated on interval data and

produced an estimated number of failures for the next interval, it did not yield the actual

time to next failure. This time was computed by interpolating on the graph between the

data points to assess the estimated time between failures. As in the estimates for use of e 1,

the estimated time to failure used here are not averages but are the sole estimated values

by these models. The data for each of the models are provided in Table 6 with their

respective e2 values in Figure 11. As shown, the predictions from the models were not

available until the eighth discrepancy, however the e2 is calculated for discrepancy 6-12.

As shown in Table 6, the difference between the MTTF of the models and the actual are

Table 6. Estimated Time to Next Failure

Failure Actual

Num TTF

6 53.5

7 322.5

8 45

9 15.5

10 106.5

11 1333

12 329.5

LV LV S-Shape

Pred Retro Pred

S-Shape

Retro

na 143 na 110

na 195.4 237.5 120

211.5 255.8 251 140

130.57 324.2 112 170

66.34 400.7 bin w/f9 230

81.96 485.2 infinity 330

743.2 577,8 infinity 880

344 DAVIS, EARLS, & PATTERSON-HINE

35

3

25

2

_, rs
k

@b

o

05

[] LVstepw_,e [] LVretrofit [] S Shapedste_v,;_: ill 5 Shapedretrofit

Figure 11. Relative error for MTTF. _2,

not surprising. The S-Shaped prediction tor failure I0 is nol provided as it occurred in the

same time interval as failure 9. For this reason, the S-Shaped model did not predict for

that failure, but rather [or that interval it had predicted I failure to occur. Given the small

data set and the wide range in values from one discrepancy to the next, this data seem

difficult to fit and morc difficult to predict. It is interesting to see, though, the difference in

the same model from the predictive stage to the retrodictive stage. The LV model had the

largest gap between prcdictive and retrodictive tot the 10th and l lth discrepancies. The

S-Shaped predictive tended to become optimistic with the increased number of nonfailed

intervals, indicated by the model estimating infinite time to next failure (all of the failures

had been found). The prcdicted time to the last two failures was infinity. The retrodictive

fit of the S-Shaped model seemed to fit the tailures better.

The relative error plot of this MTTF data (e2), provided in Figure 11, shows an error

consistent among the models up through failure number 10. The stepwise predictions did

not fare well on the estimates lor numbers 11 and 12; however, given the small set of data

and its wide range of values, one is not surprised. Based on these values, the tendency is

to be turned away from the S-Shaped predictive because of the last two values being olt"

the chart, and more toward the LV retrofit, which remained on the chart with consistently

less error than the S-Shaped retrofit. This disproved the previous intuitive selection of the

S-Shaped model, which was based on how the model seemed to fit.

7 OBSERVATIONS

The flight test community at Dryden Flight Research Facility has established a credible

means of testing and achieving reliability for safety-critical flight systems. To date. their

RELIABILITYANALYSIS OF X-29A FLIGHTCONTROL 345

operations have not included the use of formal software reliability modeling techniques.
The success of the many programs at Dryden attests to the value of their methods, with

this independent evaluation of the X-29A flight control software indicating no difference.

However, the X-29 flight test program was one of Dryden's most successful programs.
Acknowledging that not all programs are carried out as smoothly as this, the use of

objective analysis tools could provide keen insight to problem areas. The analysis of the

X-29A flight data did not indicate that the program was unreliable, and it did not dispute

the achieved results. Thus the internal engineering judgment and post facto statistical
model results were similar.

The results obtained through the statistical analysis using the stepwisc prediction and

retrodictive fit of several standard software reliability models were not strong enough to

justify the use of any one of the models. More important, the predictive capabilities of the
models were inhibited by the sparseness and variability of the criticality level I data.

Some observations made in this analysis are:

• Various levels of criticality and their implications of failure suggest that a visibility

factor affects error detection. This is opposite from assumptions underlying some of
the models that either all errors have the same probability of being detected or are all of

thc same criticality.

• The data set used within this analysis was sparse and difficult for the models to fit.

However, this data set was complete. The models were not usable until half of the

failures were discovered as it required between 5 months and 2 years of full-up systems

testing data (5-10 data points) to produce output. In this safety-critical application, if
the manager were awaiting reliability results, the flight program would have been

unduly delayed.

• Thc use of software reliability analysis techniques can present useful information in an

operational context. These techniques are to aid the analysis of current status and

provide predictions tor future error occurrences. With continual updates on the "raw
data" in the form of graphs and tables, intuitive analyses can aid the program managers

in deciding to test further or to possibly even discontinue use of a current version of

code and proceed to the next.
• The models do not utilize all of the data available for assessing and predicting the

reliability. Perhaps there are indicators that could be extracted from other relevant

project information that would enable results sooner--especially given that the data

are sparse.
• The statistical models provided by the software reliability community are designed to

provide probabilistic predictions for time and occurrence of future discrepancies. This

type of intbrmation can also support the safety-critical systems operational community.

However, it is only through the publication and sharing of safety-critical systems
failure data like the X-29A that the reliability modeling community can adjust their

techniques and models to more accurately represent similar safety-critical system
behavior.

• After establishing the applicability of statistical reliability models, evaluation tech-

niques for the validity of the predictions must be applied to every contributing aspect

of the models. The techniques utilized within this paper were necessarily crude due to
the small data set, however use of referenced methods are preferred t_r completeness.

• Even if statistical results are not heavily relied upon, the heightened awareness created

346 DAVIS, EARLS,& PATTERSON-HINE

through the establishment and use of various data collection mechanisms with at least

quick look analyses would realize benefits in reliability for any program.

More information from the program could and should be incorporated into the models

to enable more rapid production of quality results. Finer tuned models designed for this
type of operational software have the potential to enable prediction of error occurrence

and focus software testing lbr specific errors by criticality level. One of the greatest

factors in reliability analysis of real-time, safety-critical systems is the implications of

failure. With human life at risk, a purely statistical representation of the assessed re-

liability is not enough on which to base a life-critical decision to fly, but this information
may be useful in determining when NOT to fly.

8 CONCLUSIONS

Flight programs have evolved in complexity while at the same time flight schedules have

become more aggressive. Traditionally, software reliability models have been developed
for and on commercial software systems, where the user base is large with exposure to a

wide variety of operational scenarios. However, for many safety-critical systems, espe-

cially within the research community, the target software is typically not duplicated

beyond several instances and the operational testing is within the local community (as

opposed to hundreds of users testing desktop application software). The implications of

failure are also much greater within a safety-critical system. Many engineers are inclined

to believe that their software is naturally robust, and the present failure is the proverbial
"last bug." These are often reasons why failure data are not collected and maintained, as it

is oftentimes the notion that each failure is an anomaly unto itself and that there is no

correlation among subsequent failures. This is not intuitively true and only a complete set
of collected failure data would substantiate or negate this idea.

Software is increasingly used in safety-critical systems, with its design and func-

tionality becoming more complex. Tools and methods must be developed for use within

the operational community that enable objective assessment of the reliability of the

software system. One perspective that would provide aid tk_r software reliability assess-

ment is spawned from the hardware community and is based on occurrence of errors with

respect to CPU time. The raw data graphs themselves provide the managers with an

intuitive look at whether the code is becoming more or less reliable and hence help them to
decide whether or not to fly. The use of statistical models would add credence to this

judgment and ideally provide predictive capability on time of next error and total number

of errors. These predictions can be validated by use of reported evaluation techniques.

A systems engineering approach to validating the flight control system entails utilizing

full-up systems testing, operating the system in a manner in which it will be executed in

actual flight, and running through the operational scenarios in a rigorous yet timely

manner. This method has proved reliable to the Dryden community in the case of the

X-29A flight control program. However, the incorporation of reliability assessment meth-
ods within the context of any program, including X-29 program, could enable better

resource scheduling and utilization, provide insight into the intensity as well as density of

reported failures, and provide test engineers and managers with objective measurements

within a subjective program.

The use of software reliability analysis techniques is achievable in any system involv-

RELIABILITY ANALYSIS OF X-29A FLIGHT CONTROL 347

ing software. Independent of the source language or the underlying philosophy (modular,

structured, AI, neural networks), the analysis is the same because the system is evaluated

objectively from a "black-box" perspective. It is the results of the modeling and prediction

that allow for subjective explanations. By exercising engineering judgment when viewing

the information represented by the failure and CPU data, reliability assessment can be

performed from both subjective and objective views.

ACKNOWLEDGMENTS

The authors would like to thank the following people for their helpful commcnts during

the course of this study and oil the paper: Bill Farr, designer of SMERFS; Ed Collins,

X-29 program historian: and the reviewers, for their invaluable comments on the analysis

techniques and presentation of the results. Many thanks also to Peter Cheeseman, Mark

Boyd, and Lee Duke for their comments. And thanks to Chris Flores and his staff at

Dryden for being cooperative and supportive, and for providing us with the data in an

organized and timely manner.

REFERENCES

[I] M.R. Earls and J.R. Sitz, "Initial flight qualification and operational maintenance of X-29A

flight software," NASA Technical Memorandum 101703, 1989.

[2] E.L. Duke, "'Software V & V of t]ight and mission-critical software," IEEE Software, May

1989.

[3] M.-H. Chert, A.P. Mathur, and V.J. Rego, "Effect of testing techniques on software reliability

estimates obtained using time-domain models," in IEEE Proc. Software Reliability Sympo-

sium, Denver, CO, 1992.

[4] W.H. Farr, "'Statistical modeling and estimation of reliability functions for software

(SMERFS)," Naval Surface Warfare Center, NAVSWC TR 84-373, Rev. 2, Mar. 1991.

15] W.H. Farr, "A survey of software reliability modeling and estimation," Naval Surface Weap-

ons Center, NSWC TR 82-171, Sep. 1983.

[6] W.H. Farr, "Statistical modeling and estimation of reliability functions for software

(SMERFS) library access guide," Naval Surface Warfare Center, NAVSWC TR 84-371, Rev.

2, Mar. 1991.

171 A.A. AbdeI-Ghaly, P.Y. Chan, and B. Littlewood, "Evaluation of competing software re-

liability predictions," IEEE Trans. Software Engineering, vol. SE-12, no. 9, Sep. 1986.

[8] F.M. Vallee and A. Ragot, "Reliability evaluation using NHPP models," in IEEE Proc.

International Symposium on SoJbvare Reliability Engineering, Austin, TX, 1991.

Gloria J. Davis received a B.S. in Computer Science from the

University of New Mexico in 1983 and an M.S. in Computer Sci-
ence in 1986 from Santa Clara University. In 1980 she began

working at NASA Ames Research Center with the Flight Systems
and Simulation Research Division. Her focus on fault-tolerant

flight control systems continued through 1987. In 1988 she trans-
ferred to the Information Sciences Division. She is currently a

member of the Dependable Systems Research Group and focuses

primarily on software reliability analysis research. She is also a
member of the NRC Panel on Statistical Methods in Software

Engineering.

348 DAVIS, EARLS, & PATTERSON-HINE

Michael R, Earls received a B.S. in Electronic Engineering from

California State Polytechnic University at Pomona in 1966. He

began working at NASA's Dryden Flight Research Facility in the

Guidance & Displays Branch as a hardware engineer on the X-15

alpha-beta sensor (ball nose). Upon completion of that program,
he worked on the navigation system of the YF-12 aircraft. The

HiMAT program, a supersonic remotely piloted vehicle, was his

initiation to real-time system software, where he wrote and tested

the onboard control system software. He then joined the X-29

program (before first flight of ship 1) and designed the hardware
for the simulator actuator models. He became the software man-

ager and remains such for the X-29 ship 2. He is also currently

associated with the software of the F-18 HARV research flight
control system.

F.A. Patterson-Hine received a B.S. in Mechanical Engineering
from the university of Alabama in 1981, an M.S. in 1984, and a

Ph.D. in 1988, both from the University of Texas at Austin in

Mechanical Engineering. She was a NASA Graduate Student Re-
search Fellow and a ZONTA Amelia Earhart Fellow. She is cur-

rently the Dependable Multiprocessing Group Leader in the
Information Sciences Division at NASA Ames Research Center.

Her interests include modeling and analysis of complex systems,

model-based fault diagnosis, fault management in real-time sys-

tems, and software reliability measurement and modeling. She is
a member of Tau Beta Pi, Phi Kappa Phi, the IEEE Computer Soci-

ety and Reliability Society, the Association for Computing Ma-
chinery, and the American Nuclear Society. She is a Registered
Professional Engineer in California.

